4 research outputs found

    Interactive IIoT-Based 5DOF Robotic Arm for Upper Limb Telerehabilitation

    Get PDF
    Significant advancements in contemporary telemedicine applications enforce the demand for effective and intuitive telerehabilitation tools. Telerehabilitation can minimize the distance, travel burden, and costs between rehabilitative patients and therapists. This research introduces an interactive novel telerehabilitation system that integrates the Industrial Internet of Things (IIoT) platform with a robotic manipulator named xARm-5, aiming to deliver rehabilitation therapies to individuals with upper limb dysfunctions. With the proposed system, a therapist can provide upper limb rehab exercises remotely using an augmented reality (AR) user interface (UI) developed using Vuforia Studio, which transmits bidirectional data through the IIoT platform. The proposed system has a stable communication architecture and low teleoperation latency. Experimental results revealed that with the developed telerehabilitation framework, the xArm-5 could be teleoperated from the developed AR platform and/or use a joystick to provide standard upper limb rehab exercises. Besides, with the designed AR-based UI, a therapist can monitor rehab/robot trajectories along with the AR digital twin of the robot, ensuring that the robot is providing passive therapy for shoulder and elbow movements

    A Novel Framework for Mixed Reality–Based Control of Collaborative Robot: Development Study

    Get PDF
    Background: Applications of robotics in daily life are becoming essential by creating new possibilities in different fields, especially in the collaborative environment. The potentials of collaborative robots are tremendous as they can work in the same workspace as humans. A framework employing a top-notch technology for collaborative robots will surely be worthwhile for further research. Objective: This study aims to present the development of a novel framework for the collaborative robot using mixed reality. Methods: The framework uses Unity and Unity Hub as a cross-platform gaming engine and project management tool to design the mixed reality interface and digital twin. It also uses the Windows Mixed Reality platform to show digital materials on holographic display and the Azure mixed reality services to capture and expose digital information. Eventually, it uses a holographic device (HoloLens 2) to execute the mixed reality–based collaborative system. Results: A thorough experiment was conducted to validate the novel framework for mixed reality–based control of a collaborative robot. This framework was successfully applied to implement a collaborative system using a 5–degree of freedom robot (xArm-5) in a mixed reality environment. The framework was stable and worked smoothly throughout the collaborative session. Due to the distributed nature of cloud applications, there is a negligible latency between giving a command and the execution of the physical collaborative robot. Conclusions: Opportunities for collaborative robots in telerehabilitation and teleoperation are vital as in any other field. The proposed framework was successfully applied in a collaborative session, and it can also be applied in other similar potential applications for robust and more promising performance

    Development of a Novel Telemanipulation Framework for Human-robot Collaboration Using PTC ThingWorx and Vuforia Studio

    No full text
    Significant advancements in contemporary telehealth care applications are enforcing the demand for effective and intuitive telerehabilitation tools. The current techniques for observing live process parameters of robots frequently require complex and inefficient methods, which fundamentally limits the human administrator\u27s ability to settle on the most educated decisions possible. Telemanipulation can minimize the distance and costs in varieties of robot applications, including industry for object manipulation and robot-aided rehabilitation. This research aims to develop a novel telemanipulation framework to deliver robot-assisted rehabilitation using PTC ThingWorx’s Industrial Internet of Things (IIoT), and Vuforia Studio’s Augmented Reality (AR) platforms. This communication architecture is stable and has low latency for teleoperation. Our research shows that a remote operator (e.g., a remote therapist) can provide a variety of upper-limb rehab exercises using the developed AR-based graphical user interface (GUI), which transmits bidirectional data between the AR platform and the robot through the ThingWorx IIoT platform. For the kinematic modeling of the robotic manipulator (xArm-5 robot) used in this study, modified Denavit-Hartenberg (DH) parameters were used. The developed AR platform displays the robot data in real-time, such as joint angles, velocity, motor current, etc., thus allowing an operator (e.g., a caregiver/therapist) to monitor the robot motion representing various upper-limb rehabilitation therapies. This research also developed a telemanipulation approach using a physical joystick to teleoperate the xArm-5 robot. The experimental results revealed that the xArm-5 can be teleoperated successfully and effectively using the developed AR platform and a physical joystick to provide upper-limb telerehabilitation therapy

    A Novel Framework for Mixed Reality–Based Control of Collaborative Robot: Development Study

    No full text
    BackgroundApplications of robotics in daily life are becoming essential by creating new possibilities in different fields, especially in the collaborative environment. The potentials of collaborative robots are tremendous as they can work in the same workspace as humans. A framework employing a top-notch technology for collaborative robots will surely be worthwhile for further research. ObjectiveThis study aims to present the development of a novel framework for the collaborative robot using mixed reality. MethodsThe framework uses Unity and Unity Hub as a cross-platform gaming engine and project management tool to design the mixed reality interface and digital twin. It also uses the Windows Mixed Reality platform to show digital materials on holographic display and the Azure mixed reality services to capture and expose digital information. Eventually, it uses a holographic device (HoloLens 2) to execute the mixed reality–based collaborative system. ResultsA thorough experiment was conducted to validate the novel framework for mixed reality–based control of a collaborative robot. This framework was successfully applied to implement a collaborative system using a 5–degree of freedom robot (xArm-5) in a mixed reality environment. The framework was stable and worked smoothly throughout the collaborative session. Due to the distributed nature of cloud applications, there is a negligible latency between giving a command and the execution of the physical collaborative robot. ConclusionsOpportunities for collaborative robots in telerehabilitation and teleoperation are vital as in any other field. The proposed framework was successfully applied in a collaborative session, and it can also be applied in other similar potential applications for robust and more promising performance
    corecore